Nosotros vamos a curvar la palanca con una curvadora de tubo, que igual os interesa ver este video que no usa nada del otro mundo...
Re: Fabricación de un elevador desde 0.
Publicado: 03 Ene 2012, 21:46
por manuzu
ramon tambien as de saber que al calentar mucho el hierro,este pierde mucha fuerza.
Re: Fabricación de un elevador desde 0.
Publicado: 03 Ene 2012, 22:12
por jose manuel
Que bueno lo de los cálculos un 10¡¡
Re: Fabricación de un elevador desde 0.
Publicado: 04 Ene 2012, 00:23
por Ventura
Ramón, creo que vais bien...Pero no habéis tenido en cuenta el logaritmo neperiano de la presión atmosférica del segmento medio entre Alhabia y Alboloduy. Una vez aplicado el factor de corrección quedará muy bien.
Re: Fabricación de un elevador desde 0.
Publicado: 04 Ene 2012, 23:58
por Ventura
Ahora en serio. Un trabajo bien hecho.
Re: Fabricación de un elevador desde 0.
Publicado: 05 Ene 2012, 10:15
por lamaneta
Hoy vamos a meterle mano, subiré fotos... Alguna petición especial de algo que quiere que fotografié o explique mejor...?
Re: Fabricación de un elevador desde 0.
Publicado: 05 Ene 2012, 22:38
por lamaneta
Hoy se ha complicado un poco la cosa, y entre una cosa y otra al final poco hemos podido hacer...
DSC_0092.JPG
DSC_0095.JPG
Cojer una loseta no ha sido una buena idea, se me ha partido en mil trozos...
DSC_0122.JPG
DSC_0149.JPG
DSC_0151.JPG
DSC_0152.JPG
Re: Fabricación de un elevador desde 0.
Publicado: 06 Ene 2012, 11:50
por Mcampo68
Ramón,
Permíteme que haga un par de apuntes a los cálculos, con la única intención de ayudar (bueno también he rejuvenecido y recordado los viejos tiempos).
Según interpreto, el cálculo realizado de la longitud del brazo A implica que en la posición de abajo este brazo forma un ángulo con la horizontal de 0º. Si éste no fuera un caso, sino que formara un determinado ángulo θ (como se muestra en la figura denominada posición abajo), la altura que se elevaría la moto sería inferior. Por ejemplo, si este ángulo θ fuera de 20º, tendrías que restar:
A • sen θ = 17,32 • sen (20º) = 5,92 cm
Luego subirías la moto: 15 – 5,92 = 9,08 cm
Y con respecto a la fuerza para subir la moto, se podría hacer de forma más exacta aplicando el principio de los trabajos virtuales, que no recuerdo bien, pero que creo era algo así:
Si la barra corta A forma un ángulo θ con la horizontal y aplicamos una fuerza F en el extremo de la barra B perpendicular a la misma, de forma que ambas barras (solidarias) se desplacen un ángulo infinitesimal d θ, el trabajo infinitesimal que realiza la fuerza F es:
dT = F • B • d θ
Y ese trabajo se emplea en incrementar la energía potencial de la moto (aumentar su altura) y la energía cinética de la misma (hacer que se mueva y que pase del estado de reposo al movimiento). Para calcular la energía cinética:
dEc = ½ • m • (dV)^2
Las ecuaciones cinemáticas de velocidad y espacio recorrido:
dV = a • dt
A • dθ = ½ • a • (dt)^2 => (dt)^2 = 2/a • A • dθ
Sustituyendo en la fórmula de la Energía cinética:
dEc = ½ • m • a^2 • (dt)^2 = ½ • m • a^2 • 2/a • A • dθ = m • a • A • dθ
Y la energía potencial (siendo m la masa de la moto):
dEp = m • g • dh = m • g • A • cos θ • dθ
Entonces igualando el trabajo que hacemos a los incrementos de energía cinética y potencial:
F • B • d θ = m • g • A • cosθ • dθ + m • a • A • dθ
Despejamos F:
F = m • g • A/B • cosθ + m • a • A/B = A/B • m • (g • cosθ + a)
Por tanto la fuerza F depende (como se ve intuitivamente) de la relación de longitudes de los brazos A y B, del ángulo θ y de la aceleración a con la que quieras subir la moto. Tan sólo te queda decidir una fuerza razonable (50 kg -o su equivalente en N- dijiste), el ángulo θ y una aceleración razonable (propongo subir los 15 cm en 3 s, lo que daría una aceleración media de 0,15 = ½ • a • 3^2 => a = 2 • 0,15/9 = 0,3/9 = 0,1/3 = 0,033 m/s^2), para despejar la longitud B. Por cierto, el momento en que más fuerza hay que aplicar es en la posición abajo, en la que el ángulo θ es menor y por tanto su coseno mayor; conforme va subiendo el ángulo aumenta y su coseno se reduce (además de que al final del recorrido la energía cinética se transforma en energía potencial y por tanto hay que hacer mucha menos fuerza; al final "sube sola").
Otra cosa que hay que cuidar es la geometría de la palanca para que el brazo B no choque con el suelo antes de llegar a la posición arriba.
Re: Fabricación de un elevador desde 0.
Publicado: 06 Ene 2012, 14:12
por lamaneta
Mcampo68 escribió:Ramón,
Permíteme que haga un par de apuntes a los cálculos, con la única intención de ayudar (bueno también he rejuvenecido y recordado los viejos tiempos).
Según interpreto, el cálculo realizado de la longitud del brazo A implica que en la posición de abajo este brazo forma un ángulo con la horizontal de 0º. Si éste no fuera un caso, sino que formara un determinado ángulo θ (como se muestra en la figura denominada posición abajo), la altura que se elevaría la moto sería inferior. Por ejemplo, si este ángulo θ fuera de 20º, tendrías que restar:
A • sen θ = 17,32 • sen (20º) = 5,92 cm
Luego subirías la moto: 15 – 5,92 = 9,08 cm
Estas seguro....? Creo que para un radio de 17.32cm con un angulo de 30º, lo que sube realmente es el Cos(30º) * 17.32 Cm. que es 15 cm.
Ahora no te lo puedo dibujar pero si tomamos esta foto
El radio es el radio, y lo que sube es el Coseno.
Re: Fabricación de un elevador desde 0.
Publicado: 06 Ene 2012, 14:25
por Mcampo68
Sí; está claro que si en la posición arriba dejas el brazo A inclinado 30º con respecto a la vertical, lo que sube el extremo no articulado del brazo es 17,32 · cos 30º, desde la horizontal, lo que quiero decir es en la posición abajo la palanca A no parte de una posición horizontal, sino que ya parte de un cierto ángulo con respecto a la horizontal, por lo que debes restar ese recorrido a los 15 cm, que es la proyección vertical del brazo, es decir 17,32 · sen (angulo que forme el brazo en la posicón abajo con la horizontal).